
POSUM: A Portfolio Scheduler for
MapReduce Workloads

Maria A. Voinea
Technische Universiteit Delft
m.voinea@student.tudelft.nl

Alexandru Iosup
Vrije Universiteit Amsterdam

a.iosup@vu.nl

Abstract—MapReduce systems are widely used in today’s
data-driven society and there is a large body of work dedicated to
scheduling such jobs in data centers. However, when considering
compound performance objectives (such as reducing runtime
and costs) it is difficult to design only one scheduler to achieve
specific results. In contrast, we propose POSUM, a system capable
of adapting to the current workload characteristics and target
objectives by periodically evaluating a set of potential policies,
and switching to ”the best” one. The work is ongoing, but we have
found that designing a system with such flexibility requires total
decoupling from the MapReduce framework itself. A consistent
repository of processing statistics should be accessible by all com-
ponents involved in simulation and decision making, especially for
application agnostic frameworks such as Hadoop YARN. Also,
prediction should depend on the exact mapper and reducer class
references as a more stable indicator of similarity, preferable to
application or user name.

Keywords—MapReduce, portfolio scheduling, data center, pro-
visioning and allocation; scheduling policies, Hadoop YARN

I. INTRODUCTION

Although not a universal panaceum for big data problems,
MapReduce systems are widely used in industry, governance,
and academia [1]. Scheduling MapReduce workloads is thus
important, and, as related work indicates [2] [3] [4], chal-
lenging. Various schedulers have already been proposed to
address MapReduce stragglers [5], resource utilization [6], and
job deadlines [7]. However, designing only one scheduler to
optimize for multiple performance goals can be very difficult
and error-prone, and ephemeral in that a change of goals can
render the scheduler ineffective. In contrast, we propose a
system that dynamically switches between a set of scheduling
policies, to achieve the desired (and possibly changing) goals.
This concept, of portfolio scheduling [8], [9], has never been
used in big data settings, and in particular has never been used
for MapReduce workloads.

Companies are relying increasingly on big data and busi-
ness analytics to make their products and services customer-
centric, improve operational performance, and even identify
new business opportunities. Worldwide revenues could grow
from nearly 122 billion dollars in 2015 to more than 187
billion in 2019, an increase of more than 50% [10]. Concur-
rently, governments and municipalities are also investing in
big data research for improving public health and safety, and
sustainability.

MapReduce is a prominent programming model devised
for achieving abstraction and scalability in data processing.
It involves running parallel tasks to process the input data in
chunks. To allocate data center resources for these tasks and

thus achieve the desired optimization goal, current MapRe-
duce frameworks, such as Hadoop 1, select and then rely
on a single scheduling policy. Corresponding to the diverse
needs of current users, in practice, there exist many different
scheduling policies, focusing on different operational aspects
and/or optimizing for different goals. For example, many
policies try to reduce the runtime, that is, the time elapsed
between the submission of a job and its completion, across
the jobs of all users running on a fixed-sized cluster. Others,
when considering the financial cost of compute resources and
their energy consumption, optimize for resource utilization
and scale the cluster according to load. More complex usage
patterns require their own scheduling policies, for example
when a MapReduce application is part of a more elaborate
business pipeline and, thus, must produce results by a certain
deadline; this performance goal is commonly expressed as a
Service Level Objective (SLO) and is common for latency-
sensitive applications (e.g., personalized advertising and live
business intelligence, span or fraud detection, and real-time
event log analysis [4]). Similarly, scheduling policies may be
conceived to work at different levels and have various effects
depending on workload composition [11].

Designing just one scheduling policy to optimize for an
objective that spans multiple desired effects can prove to be
very difficult. Only a slight miscalculation or misinterpreta-
tion can have a great impact on the outcome. To address
this problem, we design POrtfiolio SchedUler for Mapreduce
(POSUM, pronounced ”possum”) as an alternative for tackling
compound objectives for dynamic MapReduce workloads. At
its core, POSUM relies on online simulation to evaluate, given
the current state of the system, which out of a set of policies
will perform the best, before switching to it for a given time
period. This allows each policy to remain manageable in terms
of complexity and hold true to its target use case, while
still leaving room for the system to adapt at runtime and
achieve the necessary performance objectives. In this work,
our contribution is four-fold:

1) We design of a portfolio scheduler architecture for
MapReduce systems (Section III).

2) We design of a simulator for online prediction of task
behavior (Section IV).

3) We design a portfolio of scheduling policies to be
used by the POSUM scheduler (Section V).

4) We design a set of experiments for evaluating the
performance of the proposed scheduler VI.

1https://hadoop.apache.org/

https://hadoop.apache.org/

II. BACKGROUND

The MapReduce model involves breaking up an applica-
tion’s input into chunks and processing it in several phases.
During the initial phase, called mapping, the map routine
processes each chunk into a meaningful key-value mapping.
The pairs are then sorted by key, during the shuffle phase. The
final step is reducing: the reduce routine is called to aggregate
the values of each key and output the final key-value results.

The developer is required to provide only the input lo-
cation, along with the map and reduce routines. Once the
application is sent for execution on a computer cluster, it
becomes a job to be automatically managed by the chosen
MapReduce framework. As shown in Figure 1, the job is added
to a queue where it waits to be scheduled, i.e, be allocated the
resources (RAM memory and CPU) required to run. If the pool
of resource requests (computation resources required by each
task to execute) exceeds the cluster’s capacity, the scheduling
policy determines the order in which each of the requests are
to be executed for achieving the desired system objectives.

Fig. 1: MapReduce scheduling.

A core characteristic of MapReduce processing is the
focus on data: its location, how long it takes to transfer it
to computation nodes, the overhead of writing and reading it
from disk, etc. The local storage of nodes in a MapReduce
cluster forms a distributed file system. This structure allows
for large amounts of data to be stored fault tolerantly and to
be readily available for processing, even under scarce network
bandwidth. This is the concept of data locality: scheduling a
task on or close (on the same rack) to the node that holds its
input data so as to lose less time on data transfer.

Job scheduling is a well-developed subject in the data
center context. For MapReduce specifically, multiple schedul-
ing policies have been devised to prioritize and optimize job
execution, considering the particular characteristics of these
workloads. The first MapReduce schedulers operated on First-
In-First-Out (FIFO) order, meaning that the jobs were sched-
uled in the order of their arrival. Later, Fair Scheduling [12]
was introduced for using max-min fairness to share resources
between pools of jobs/ users.

Within the same job, tasks have always had higher priority
on nodes holding their data. However, delay scheduling ap-
proaches [13] [2], relax inter-job priority even more to achieve
better data locality. Cheriere et al. [14] argue that considering
data locality when choosing which job should run on a given
free slot leads to long wait times for small short jobs. Their
Shortest Remaining Time First (SRTF) scheduling policies give
higher priority to such jobs. Nguyen et al. [3] use a compound
metric with variable coefficients to control the extent to which
these short jobs are favored.

Meeting specific Service Level Objectives (SLOs) for jobs
is another direction of optimization for MapReduce schedulers.
Kc and Anyanwu [15], Polo et al. [16], Dong et al. [17],
and Verma et al. [7] use historical information to predict
future resource needs for achieving the required deadlines.
Lim et al. [4] attempt to address the issue using offline
constraint programming (CP). Other directions of research
include mitigating stragglers (hanging tasks that need to be
restarted), dynamic voltage scaling, virtualization, etc.

Fig. 2: The periodic portfolio scheduler in Deng et al. [8]

Our approach for achieving compound objectives under
variable workloads relies on portfolio scheduling. The tech-
nique was borrowed from economics and first introduced to
the field by Deng et al. [8]. As seen in Figure 2, the scheduler
contains a portfolio of policies which it evaluates periodically
using a simulator. The simulator predicts the behavior of each
policy under the current system load, given the queued jobs. It
returns a score as a combination of performance metrics. The
scheduler chooses the policy with the highest score to switch to
for the duration of the next period. The same concept has been
successfully applied in previous studies to schedule scientific
workloads on a compute cluster [18] and long-running virtual
machines in data centers [9].

III. DESIGN OF POSUM

The design process of the portfolio scheduler started out
with several goals in mind: include necessary conceptual ele-
ments of portfolio scheduling found in previous work (1); take
into account the characteristics of MapReduce processing (2);
adapt the resulting scheduler architecture to an actual, widely
used MapReduce framework (3); keep the design flexible so
as to explore and compare different approaches(4); follow or
compare to state-of-the-art techniques wherever possible.

Addressing these goals, we design POSUM, an online
meta-scheduler that can switch scheduling policies at runtime,
based on real-time policy performance evaluations. POSUM
is meant to be self-contained and exist alongside a MapRe-
duce cluster, only interacting with it when gathering runtime

information and for switching scheduling policies. This makes
it possible to easily integrate it with any MapReduce runtime
framework. To test compliance with the third design goal, our
implementation was integrated with the Hadoop (YARN) stack.

The system follows the high-level architecture illustrated
in Figure 3. The system is comprised of three main processes
which interact. The Data Master is responsible for monitoring
the system and providing a coherent view of the stored
statistics to the other processes. Two monitors operate on
a configurable heartbeat. The Cluster Monitor gets real-time
information about applications and tasks that are running from
the MapReduce framework. The POSUM Monitor, on the
other hand, gathers and interprets data on the operation of
POSUM itself: simulation durations, the discrepancy between
simulation scores and actual policy performance, etc.

The information gathered by the Data Master is used
most intensively by The Simulator Master, a loosely coupled
component that can simulate the outcome of a scheduling
policy, given a certain queue composition, cluster state, and
previous runtime statistics (see Section IV).

All decisions regarding POSUM’s operations are made by
the Orchestrator. It triggers or stops policy scoring simulations,
it handles the application of policies, and makes decisions
based on the feedback gathered by the system monitor. It is
also capable of applying provisioning decisions, by reconfig-
uring the cluster to make use of or free recently added nodes.

However, actual policy application is done via the Portfolio
Meta Scheduler, which is not an independent process, but
a placeholder that extends the standard resource scheduler
interface of the target framework. It delegates all its public
and protected methods to the current policy that is being
applied. It keeps evidence of the available scheduling policies
and uses the logic of the currently plugged-in policy to reach
each scheduling decision. This abstraction ensures that the
transition between policies is seamless and does not disrupt
the framework’s operation. We have found that this component
also needs access to the statistics on application progress, when
policies need more information about the running jobs to make
their decisions.

Keeping the architecture modular achieves separation of
concerns and enables both flexibility in approach exploration
(demanded by the fourth goal) and runtime performance
tweaking. Each process can be deployed to a separate machine,
can have different JVM characteristics, and can be restarted
independently on failure.

IV. DESIGN OF THE CORE SIMULATOR

POSUM uses a discrete-event simulator which mimics the
same message-based event handling mechanism that enables
MapReduce frameworks, like Hadoop, to operate. Resources
are not modeled explicitly so as to reduce simulation time as
much as possible (since the decisions need to be real-time).
For further simplification, failure events are not considered in
this version of POSUM. It hypothesizing about the behavior of
jobs as they come into the system, by looking at their configu-
ration, their current behavior (if they are already running), and
historical data gathered from jobs that have already run on the
system, that may or may not have had similar characteristics.

Fig. 3: POSUM overview.

The heart of the simulator is a component responsible for
predicting how long each task will take. Several techniques
from existing work have been combined into a set of three
predictors of increasing complexity.The Basic Predictor calcu-
lates task runtimes as an average of the runtimes of tasks of the
same type that ran on the cluster. They can be from the current
job, if the job already has completed tasks, or calculated from
historical data by looking at similar jobs that were run on
the cluster. Jobs are considered ”similar” if they have been
submitted by the same user. The maximum number of past
jobs that are used as reference is a configurable parameter in
the system. The result is comparable what Polo et al. [16] use.

The Standard Predictor augments the prediction by con-
sidering task durations dependent on the data they have to
process. Thus, the average processing rate (APR is calculated
from past tasks, and, in the case of map tasks, also their
selectivity. The result is close to what Kc et al. [15] describe,
but without differentiating between the shuffle and reduce
phases of reduce tasks. The following equation applies (see
Table I for the notations):

rMi = dMi · ρM , rR = f · dM · ρR (1)

Moreover, the system considers the map and reduce task
history separately: since mapper and reducer classes are listed
in the job configuration, the predictor looks at past jobs that
have used the map class when computing the map average,
and past jobs with the same reducer for the reduce average.
This is much more reliable than the application name, between
subsequent runs. If there is no exact history, the latest jobs of
the user are used for both map and reduce calculation. If no
history is available at all, but some map tasks have already
completed, the processing rate of reduces is considered equal
to the map processing rate.

Symbol Description

dM
size of the data that each map task
has to process

f map selectivity

ρM =
∑

i∈CM

rM
i
di

APR of completed maps

ρR =
∑

i∈CR

rR
i
di

APR of completed reduces

rMi runtime of task i of type map

rRi runtime of task i of type reduce
di input data of task i

CM
set of similar completed map
tasks

CR
set of similar completed reduce
tasks

ρML APR of similar local maps

ρMR APR of similar remote maps

ρRs,T APR of similar typical reduces

ρRm
APR of the merge step of a sim-
ilar reduce task

ρRr
APR of the reduce step of a sim-
ilar reduces

tRs,1
average shuffle time for similar
first wave reduces

VD =

∑
i∈D

(max(0,ri−di))
2

|D|

cumulated deadline violations of
DC jobs

SB =
∑

i∈B
ri

max(ei,MinE)

cumulated bounded slowdown of
batch jobs

C =
∑

n∈N
un

D set of DC jobs in workload
B set of batch jobs in workload
ri runtime of job i

ei
total execution time of the tasks
of job i

MinE
lower bound on the execution
time of jobs

di desired runtime of job i
un uptime (in hours) of node n

N
set of nodes in the cluster (maxi-
mum size)

TABLE I: Notations used in Equations 1 - 5

.

The Detailed Predictor goes even deeper into the task
internals and constructs a profile for each job that passes
through the system. This predictor takes into account the fact
that map tasks running on nodes that do not have their data
locally may run for longer than tasks that do. As such, when
computing the average map process rate, either from historical
or current data, two values are kept, one for local and one
for remote tasks. Also, the reduce task duration is split up
into its three constituent phases: the shuffle phase (when input
records are copied from the mappers), the merge phase (when
these are merged into the final reduce input), and the reduce
phase (when the reduce algorithm is applied to the constructed
input). Processing rates for all task phases are kept separately.
Moreover, the profile also includes first wave shuffle times,
which are fixed time values that correspond to the part of
the first shuffle phase that does not overlap with the map
phase. The resulting reduce estimation is similar to the one

from Verma et al.[7], with the modification that merge time
is considered and no regression is used (see Table I for the
notations):

rMi =

{
dM · ρML , for local map i
dM · ρMR , for remote map i

, (2)

rRi =

{
f · dM · (ρRs,T + ρRm + ρRr), for typical reduce i
tRs,1 + f · dM · (ρRm + ρRr), for first reduce i

.

(3)

V. DESIGN OF THE PORTFOLIO OF SCHEDULING POLICIES

The policies equipped in the portfolio should be representa-
tive and capable of performing on different workload patterns
and application types. However, their number should be rela-
tively restricted, so as to minimize the exploration step during
the selection and application phases. Seeing as this is the first
exploratory study of portfolio scheduling on MapReduce, and
the operational model is not confined to a particular domain,
the set of policies has been composed manually, keeping the
three performance dimensions in mind: respecting deadlines,
lowering batch job runtime and minimizing resource (node)
uptime (see Section VI for the system model details).

Thus, each scheduling policy is composed of two sub-
policies: the first controls task prioritization and slot allocation,
while the latter handles node provisioning (scaling of the
cluster). Table II contains a short description of each of them.

The allocation policies are inspired by a short survey of
the field. For deadline constrained (DC) jobs, the baseline
policy is usually Earliest-Deadline-First (EDF) in literature
[15] [16] [17]. Following the same reasoning for the second
performance dimension, jobs with larger slowdown should
have higher priority. Thus, for batch jobs (BC), the Largest-
Slowdown-First (LSF) heuristic is a good candidate. However,
a form of prioritisation needs to be established between the
two categories as well.

Two solutions were adopted for this, resulting in the
pair of policies EDLS-Sh and EDLS-Pr.The δ parameter is
configurable in the system (between 0 and 1) and represents the
importance of DC jobs for the cluster owner. The two policies
optimize by tailoring to the types of jobs in the workload. It is
to be noted that although they derive conceptually from general
cluster scheduling techniques, it is not entire jobs that are
scheduled using the heuristics, but their constituent tasks. This
results in constant reshuffling of the jobs in the priority queues
even while they are running, a characteristic of MapReduce
processing.

Another pair of policies was added to optimize for the size
of the jobs in the workload: hSRTF and LOCF. The former
should give preference to jobs that have smaller input and
shorter execution times, while the latter favors the ones with
large input sizes. This happens because a larger input would
be distributed on a larger portion of the cluster, increasing the
probability of at least one task being local on the target node
(at least in the beginning of the job’s execution).

The resulting set of four policies thus achieves a balance
between both types of priority enforcement, while tailoring to

specific workload characteristics. Moreover, they enrich tra-
ditional job scheduling approaches with MapReduce-specific
dimensions like task performance and data locality (in line
with the second design goal).

For provisioning, the different policies choose at what rate
to expand or shrink the cluster in order to scale up when the
risk of deadline violations is high, and scale down when the
cost of leasing nodes outweighs the benefits.

The two types of policies are always used in combination
(a total of 16 posibilities) and the full spectrum is explored on
each simulation. Once a decision is made, the sub-policy of
the first type is plugged into the system as the main scheduler.
The resize policy is used by the POSUM Master to reconfigure
the cluster.

VI. EXPERIMENTAL EVALUATION

We are still in the early stages of designing the experiments
for evaluating the performance of POSUM. There are three
directions that we are following:

1) evaluation of prediction accuracy: a set of exper-
iments for comparing the capabilities of the three
predictors with respect to results reported in the
literature that inspired them;

2) evaluation of the performance of POSUM itself:
a series of experiments for comparing POSUM’s
dynamic policy switching with the results obtained
by running each constituent policy separately on the
same workload;

3) a sensitivity analysis: runs with different configu-
rations of parameters regarding prediction (i.e. al-
gorithm and default runtimes), operation (i.e the δ
factor), and the compound objective (Equation 5).

POSUM was implemented for and integrated into the
Hadoop (YARN) 2.7.1 stack through a GitHub repository
fork. All the components are started as separate processes that
communicate via the same RPC mechanism that Hadoop uses
internally. All experiments are run on the TU Delft site of the
DAS-5 2. The cluster contains identical nodes running CentOS
Linux. Each machine has a Dual 8-core processor at 2.4 GHz,
64 GB RAM, and two 4TB HDDs. The nodes are connected
by both standard 1 Gbit/s Ethernet, and FDR InfiniBand.

As production trace data is often lacking in real-time sys-
tem information (node topology, data placement, bandwidth,
disk speed, failures), the main experiments are run with the
micro-benchmarking tool called BigDataBench 3[19] (inspired
by HiBench). The workloads will be synthetic, created using a
fixed set of benchmarking algorithms. The input data for each
job will be generated, with sizes drawn from an exponential
distribution of predominantly small values, as per the findings
by Chen et al. [11]). Both uniform and bursty arrival patterns
will be explored for their effect on the performance. In the case
of the real-time applications, deadlines are generated using
techniques from literature [16] [4], i.e. the time it takes to run
an application with the same data size alone on the cluster,
multiplied by a relaxation factor.

2http://www.cs.vu.nl/das5/
3http://prof.ict.ac.cn/BigDataBench/

Throughout the experiments, the performance objective
comprises three aspects: the accumulated SLO violation penal-
ties, total batch job slowdown, and the charged cost for leasing
the cluster nodes by the hour. Since the three metrics operate
in different value ranges and are difficult to normalize, the
aggregated performance score is not a scalar value, but a three-
dimensional vector:

P = (VD, SB , C) (4)

Thus, any compound metric can be expressed with the same
notation and plugged into the system. All that is needed is an
appropriate function to compare two performance scores. The
formula we use is:

Fc(P1(VD1
, SB1

, C1), P2(VD2
, SB2

, C2)) =

α |VD1
− VD2

|+ β |SB1
− SB2

|+ γ |C1 − C2| (5)

, where α, β, and γ are normalization factors to compensate
both the value range differences, and the relative importance
of each metric to our hypothetical data center customer.

VII. RELATED WORK

While the concept of portfolio scheduling has been used
before, previous work is not directly compatibile with the
described MapReduce cluster. The approach of van Beek et
al. [9] took into consideration only the provisioning of long-
running VMs, not the scheduling of individual jobs. Moreover,
the resource usage and behavior of VMs in time is considered
to be previously known, which is not realistic for real-time
MapReduce clusters. Closer to the current model is the work of
Deng et al. [18]. However, it differs in both workload type and
operation. MapReduce workloads are generally data-intensive,
as opposed to scientific computing, which are generally more
concerned with CPU-RAM interaction. Furthermore, where in
the model of Deng et al., jobs were considered independent
and were assigned VMs from the pool, the current model
divides each job into several tasks that have dependencies and
communication needs between them.

This work also draws inspiration from previous research
in the design of the simulator. However, none of the existing
solutions fully match our simulation requirements. SLS 4,
MRPerf [20] and MRSim [21] have very low-level resource
models that result in heavy time costs, while MRSG [22] and
YARNsim [23] are designed to run a specific job based on a
manually-constructed behavior configuration, and not an entire
workload. Mumak, SimMR and Starfish are not compatible
with the YARN architecture and require upgrading, but Mumak
is available for source modification. However, Mumak is not
capable of running a new workload: it only replays previous
traces with a given scheduler. In conclusion, we have designed
and implemented a new MapReduce simulator for use with the
portfolio scheduler, based on techniques and results of previous
work.

4https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/
SchedulerLoadSimulator.html

http://www.cs.vu.nl/das5/
http://prof.ict.ac.cn/BigDataBench/
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html

Name Type Description

EDLS-Sh allocation
a share-based scheduler in which DC jobs are given a share of the cluster equal to δ and are ordered
by EDF, while BC jobs get (1− δ) of the cluster and are ordered by LSF

EDLS-Pr allocation
an order-based scheduler in which two queues are kept (one with DC jobs in EDF order and the other
in with BC jobs in LSF order), and on each scheduling decision, the DC queue has δ chance of getting
picked and the other has (1− δ)

hSRTF allocation the share-based version of the Shortest-Remaining-Time-First scheduler described by Cheriere et al. [14]

LOCF allocation
a FIFO scheduler that enforces locality along the lines of what Zaharia et al. [13] and He et al. [2]
implemented

+X provisioning increase size of the cluster by a number of x nodes
-X provisioning increase size of the cluster by a number of x nodes

DLX provisioning resize to as many nodes as are needed to meet all the deadlines
MaxBSD provisioning resize to as many nodes as are needed to not exceed a configured maximum

TABLE II: A description of the policies used by POSUM.

With regard to the body of existing work for scheduling
MapReduce applications (briefly described in Section II), the
focus of this work is not devising a single new and effective
scheduling policy, but rather adapting existing solutions to
work in a complementary fashion so as to cater to different
workload compositions and arrival patterns.

VIII. CONCLUSION AND ONGOING WORK

Designing one single scheduling policy to achieve com-
pound performance goals is complex and risky. Our system
uses the advantages of portfolio scheduling to cater to this
use case. We have found that it is best to decouple such a
system from the MapReduce framework itself and keep the
architecture modular. Prediction and even some scheduling
decisions rely heavily on past and current processing statistics,
meaning that these must be available at all times and in a
consistent fashion. Also, current simulators are not equipped
for online prediction of task behavior on the newer Hadoop
stack. We, thus, offer our own implementation of one.

We have yet to carry out the necessary experiments for
evaluating the system and comparing it to existing solutions.
After each series of experiments, additional work will be done
for integrating feedback and adjusting configuration to better
outline the benefits and limitations of using this approach.

REFERENCES

[1] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas,
“Nobody ever got fired for using hadoop on a cluster,” in Proceedings of
the 1st International Workshop on Hot Topics in Cloud Data Processing,
ser. HotCDP ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:5.
[Online]. Available: http://doi.acm.org/10.1145/2169090.2169092

[2] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new mapreduce
scheduling technique,” in CloudCom, 2011, pp. 40–47.

[3] P. Nguyen, T. A. Simon, M. Halem, D. Chapman, and Q. Le, “A hybrid
scheduling algorithm for data intensive workloads in a mapreduce
environment,” in UCC. IEEE Computer Society, 2012, pp. 161–167.

[4] N. Lim, S. Majumdar, and P. Ashwood-Smith, “A constraint pro-
gramming based hadoop scheduler for handling mapreduce jobs with
deadlines on clouds,” in ICPE, 2015, pp. 111–122.

[5] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in OSDI, 2010, pp. 265–278.

[6] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy efficient
scheduling of mapreduce workloads on heterogeneous clusters,” in
GCM. ACM, 2011, p. 1.

[7] A. Verma, L. Cherkasova, and R. H. Campbell, “Resource provisioning
framework for mapreduce jobs with performance goals,” in Middleware,
2011, pp. 165–186.

[8] K. Deng, R. Verboon, K. Ren, and A. Iosup, “A periodic portfolio
scheduler for scientific computing in the data center,” in JSSPP, 2013,
pp. 156–176.

[9] V. van Beek, J. Donkervliet, T. Hegeman, S. Hugtenburg, and A. Iosup,
“Self-expressive management of business-critical workloads in virtual-
ized datacenters,” IEEE Computer, vol. 48, no. 7, pp. 46–54, 2015.

[10] L. Columbus, “Roundup of analytics, big data & bi forecasts and
market estimates, 2016,” http://www.forbes.com/sites/louiscolumbus/
2016/08/20/roundup-of-analytics-big-data-bi-forecasts-and-market-
estimates-2016.

[11] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for eval-
uating mapreduce performance using workload suites,” in MASCOTS,
2011, pp. 390–399.

[12] Y. Tao, Q. Zhang, L. Shi, and P. Chen, “Job scheduling optimization
for multi-user mapreduce clusters,” in PAAP, 2011, pp. 213–217.

[13] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010, pp. 265–278.

[14] N. Cheriere, P. Donat-Bouillud, S. Ibrahim, and M. Simonin, “On
the usability of shortest remaining time first policy in shared hadoop
clusters,” in SAC, S. Ossowski, Ed. ACM, 2016, pp. 426–431.

[15] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet deadlines,”
in CloudCom, 2010, pp. 388–392.

[16] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,
“Performance-driven task co-scheduling for mapreduce environments,”
in NOMS, 2010, pp. 373–380.

[17] X. Dong, Y. Wang, and H. Liao, “Scheduling mixed real-time and non-
real-time applications in mapreduce environment,” in ICPADS, 2011,
pp. 9–16.

[18] K. Deng, J. Song, K. Ren, and A. Iosup, “Exploring portfolio scheduling
for long-term execution of scientific workloads in iaas clouds,” in SC,
2013, pp. 55:1–55:12.

[19] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“Bigdatabench: A big data benchmark suite from internet services,”
in HPCA, 2014, pp. 488–499.

[20] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach
to evaluating design decisions in mapreduce setups,” in MASCOTS.
IEEE Computer Society, 2009, pp. 1–11.

[21] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “Mrsim: A
discrete event based mapreduce simulator,” in FSKD, 2010, pp. 2993–
2997.

[22] W. Kolberg, P. de B. Marcos, J. C. S. dos Anjos, A. K. S. Miyazaki,
C. F. R. Geyer, and L. Arantes, “MRSG - A mapreduce simulator over
simgrid,” Parallel Computing, vol. 39, no. 4-5, pp. 233–244, 2013.

[23] N. Liu, X. Yang, X. Sun, J. Jenkins, and R. B. Ross, “Yarnsim:
Simulating hadoop YARN,” in CCGrid, 2015, pp. 637–646.

http://doi.acm.org/10.1145/2169090.2169092
http://www.forbes.com/sites/louiscolumbus/2016/08/20/roundup-of-analytics-big-data-bi-forecasts-and-market-estimates-2016
http://www.forbes.com/sites/louiscolumbus/2016/08/20/roundup-of-analytics-big-data-bi-forecasts-and-market-estimates-2016
http://www.forbes.com/sites/louiscolumbus/2016/08/20/roundup-of-analytics-big-data-bi-forecasts-and-market-estimates-2016

	Introduction
	Background
	Design of POSUM
	Design of the Core Simulator
	Design of the Portfolio of Scheduling Policies
	Experimental Evaluation
	Related Work
	Conclusion and Ongoing Work
	References

