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Abstract— Recently, persistent storage bandwidth has in-
creased tremendously due to the use of flash technology. In
the domain of big data analytics, the bottleneck of converting
storage focused file formats to in-memory data structures has
shifted from the storage technology to the software components
that are tasked with decompression and organization of the data
in memory. One commonly used file format is Apache Parquet,
and a recently developed in-memory format is Apache Arrow. In
order to improve the bandwidth at which such conversions take
place, we propose a Parquet-to-Arrow converter implemented
in an FPGA. The design is modular and extendable to support
different Parquet formats. The resource utilization of the Xilinx
XCVU9P device used for the prototype is 4.16% of CLBs and
1.78% BRAMs, leaving ample room to implement analytical
kernels that operate in tandem with the file conversion. The
prototype shows promising throughput for converting the basic
structure of Parquet files with large page sizes, with the
throughput being limited by the bandwidth of the connection
to device memory.

I. INTRODUCTION

With the arrival of NVMe SSD’s, the bandwidth associ-
ated with reading data from persistent storage is increasing
rapidly. If the bandwidth of persistent storage is no longer
a bottleneck, conversion of storage focused formats to data
structures usable in memory risks becoming a limiting factor
in database systems. In order to improve the performance of
database systems we propose performing this conversion on
an FPGA. We present a framework that takes Apache Parquet
[1] pages as input and creates Apache Arrow [2] format data
structures in memory using the Fletcher [3] framework.

II. BACKGROUND

Parquet is a columnar storage format that supports multiple
compression and encoding schemes for stored data [1].
With Parquet’s columns divided into individually compressed
and encoded pages, analytics applications can benefit from
columnar data while still allowing for smaller scale accesses
without having to decompress and decode the whole file.

Arrow is a columnar format that is focused on efficient in-
memory representation of data [2]. Like Parquet, its colum-
nar format allows fast vectorized operations with the aim
of preventing data copies or serialization between different
language run-times through shared memory pools.

Fletcher is the framework that allows FPGA’s access
to Arrow data with a fast and easy to use interface [3].
Instead of byte addresses only column indices are required
to read and write data in Arrow format. Fletcher hardware is

Fig. 1. High-level architecture of the hardware

generated based on a schema describing the data set stored
in Arrow format.

III. DESIGN

A. High-level architecture

With Parquet and Arrow both being columnar formats the
hardware can read consecutive Parquet pages from memory,
interpret the page headers, and perform decompression and
decoding steps on the page data without having to do
significant data reordering.

A Parquet page consists of four distinct, variable-length
blocks of data. The header, the repetition levels, the definition
levels, and the actual values. The header contains information
on (among other things) the size of the following three blocks
in the page and the number of entries in the page. The
repetition levels and definition levels encode the structure
(in case of nested data structures) and nulls in the page
respectively according to the algorithm described in Google’s
Dremel paper [4]. These levels are not encoded in the case
of non-nested or non-nullable data. Finally the compressed
and encoded values complete the page.

There are three requirements for the design. First, the
design should be modular and expandable to enable accelera-
tion of the many different schemes Parquet supports. Second,
the design should be area-efficient in order to fit many in-
stances on an FPGA for parallel workloads, or leave room for
analytical kernels. Third, the high-level architecture should
maximize throughput so any decompressors and decoders
can be fed data at a rate close to system bandwidth (e.g.
PCIe bandwidth).

The proposed high-level architecture is seen in Figure 1.
The aligner ensures that each of the modules responsible
for reading one of the four main blocks of data in a
Parquet page in turn receives their data correctly aligned. The



aligner requires these modules to report back the amount of
bytes they used after they are finished. The rounded blocks
are replaceable or omissible modules to enable support for
different compression and encoding schemes.

Although Figure 1 shows the decoder directly streaming
the decoded values into Fletcher for immediate writing to
memory this does not have to be the case. Any hardware
supporting Fletcher style streams can be inserted in between
to allow for operations on the data (e.g. maps, filters, etc.)
before it is written to memory, allowing for optimal use
of the FPGA’s resources in accelerating any data analytics
application starting from a Parquet file.

B. Decompression

The first decompressor being integrated with the Parquet to
Arrow converter is a Snappy decompressor implemented in
previous work [5]. Preliminary benchmarks show a through-
put of 3GB/s input and 5GB/s output for Snappy compressed
files for a single instance of the decompressor. This is an
order of magnitude higher than a single thread on a Core i7
processor.

Fig. 2. Delta decoder

C. Decoding

In order to make the Parquet to Arrow converter usable
out of the box, decoders will be included that can decode at
least one encoding for floats, doubles, 32 and 64 bit integers,
and strings. Because of the prevalence of delta encoding
in Parquet (for integers and string lengths) a delta decoder
as seen in fig. 2 is proposed. In delta decoding the values
are encoded as variable-width bit-packed deltas with respect
to the previous value. After narrowing the bit-width of the
stream from the decompressor for easier manipulation using

a serializer, the bit-packed values will be correctly aligned
based on the bit-packing width and block header length
data. Hereafter, the values can be unpacked in a separate
shift and mask pipeline for each value in the aligned data.
These values will be added to the minimum delta received
from the BlockHeaderReader to create the final deltas that
can be added to the previously decoded integers in the
DeltaAccumulator.

A buffer for the character data can be added to make this
decoder work for strings as the raw character data directly
follows the encoded string lengths.

IV. PRELIMINARY RESULTS

Fig. 3. Throughput for different page sizes

To establish the overhead of processing the Parquet page
headers, an implementation was made to convert simple
(uncompressed, non-nullable, plainly encoded) Parquet files
containing only a column of 64 bit integers on an AWS
f1.2xlarge instance with a Xilinx Ultrascale+ FPGA. The
resulting throughput is seen in fig. 3. This implementation
required only 4.16% of CLB’s and 1.78% of BRAM while
timing at 250MHz. For files containing small Parquet pages
the conversion rate is limited by the latency of reading the
page headers. This effect stops being significant at 100kB
pages, after which it starts being limited by the bandwidth
of the connection to device memory. This suggests decom-
pression and decoding modules can make full use of the
read/write bandwidth of the FPGA if large enough pages are
used in the Parquet file.

V. CONCLUSION

Preliminary results show that the converter can process
the basic structure of a Parquet file at a high throughput.
Continuing work is focused on implementing decompression
and decoding modules that make full use of the strengths of
an FPGA to create Arrow format data from a Parquet file
significantly faster than a general processor. Through the use
of the proposed converter, big data analytics applications may
alleviate the software bottlenecks resulting from decompres-
sion and conversion overhead of the Parquet storage format.
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